Name	
Date	Block_

ISOTOPES: Atoms of the same element with different numbers of neutrons (and therefore different masses); most elements have at least two stable isotopes, there are very few with only one stable isotope (AI, F, P); hydrogens isotopes are so important they have special names:

0 neutrons @ hydrogen (protium) 1 neutron @ deuterium

2 neutrons 🖙 tritium

ATOMIC NUMBER (Z): the number of protons in the nucleus of an atom; whole numbers found on the periodic table; identifies an element

MASS NUMBER (A): the sum of the protons and neutrons in the nucleus of an atom; the total number of particles (nucleons) in the nucleus; actual mass is not an integral number! <u>mass</u> <u>defect</u>--causes this and is related to the energy binding the particles of the nucleus together

WAYS TO REPRESENT ISOTOPES:

Hyphen Notation

- The element name or symbol followed with a hyphen and the mass number.
- Examples
 - **Carbon-14** or **C-14** (meaning the isotope of carbon that has a mass number of 14)

Nuclear Symbol Notation

 Superscript = mass number, subscript = atomic number (may or may not be given) followed by the element symbol.


```
Example
```

. .

(meaning the isotope of carbon that has a mass number of 14- if the atomic number is not given as a subscript, remember that you can always get that from the periodic table)

Name_____ Date_____Block_____

Particle	Mass	Charge
e	9.11×10^{-31} kg	-1 or 1-
	or 1/1836 amu	
p^+	1.67×10^{-27} kg	+1 or 1+
	or 1 amu	
n ⁰	1.67×10^{-27} kg	None,
	or 1 amu	neutral, 0

Protons:

*always equal to atomic number *equal to # of e ⁻ in a neutral atom

Calculating Subatomic Particles

Neutrons: =Mass # - Atomic# =Mass # - #p⁺

Electrons: = #p⁺ - ion charge For neutral atoms, = #p+